
JOURNAL OF COMPUTATIONAL PHYSICS 52, 340350 (1983)

Fast Mixed-Radix Real Fourier Transforms’

CLIVE TEMPERTON*

European Centre for Medium Range Weather Forecasts,
Shinfield Park, Reading, Berks, United Kingdom,

and Meteorological Ofice, London Road, Bracknell,
Berks RG12 2SZ, United Kingdom

Received January 13, 1983

It is shown that the self-sorting variants of the mixed-radix FFT algorithm may be
specialized to the case of real or conjugate-symmetric input data. In comparison with conven-
tional procedures, savings of around 20% are achieved in terms of operation counts. A
multiple real/half-complex transform package on the Cray-1, based on the algorithms
described here, achieves a 30% saving in CPU time compared with a package using conven-
,tional algorithms. A similar package has also been implemented on the Cyber 205.

1. INTRODUCTION

In a previous paper [S], the fast Fourier transform (FFT) algorithm was derived in
terms of a matrix factorization. Particular emphasis was laid on self-sorting variants
of the algorithm, which eliminate the need for an explicit data permutation before or
after the transform. The algorithms in [8] related to transforms of complex data,
though it was mentioned that often the data to be transformed are real or conjugate-
symmetric; certainly this is true of all the meteorological applications described. Thus
we need to compute

or its inverse,

ck = i N$’ xj exp(-2ijkn/N), O<k<N- 1,
J-0

where the data xi are real, and the Fourier coefficients ck satisfy the relationship
C N-k = c;.

Real/half-complex transforms are usually implemented by adding a pre- or
postprocessing step to a standard complex FFT; two such procedures were given by

’ 0 Controller, Her Majesty’s Stationery Office, London, 1983.
* Present address: Recherche en Prevision Numerique, West Isle Office Tower, 2121 Trans.Canada

Highway, Dorval, Quebec H9P 153, Canada.

340
0021.9991/83 $3.00

REAL MIXED-RADIX FFT 341

Cooley et al. [3]. For example, to implement Eq. (2) for x, real we can form the
complex sequence

Zj=Xzj+ iXzj+l, O< j<N/2- 1,

perform a complex FFT of length N/2, and recover the coefficients ck through a
postprocessing step which requires (2.5N - 6) real additions and (N - 4) real
multiplications. Alternatively, to transform two independent sets of real data xj and
yj, we can form the complex sequence

Zj=Xj+iyj, O<j<N-1,

perform a complex FFT of length N, and obtain the corresponding Fourier coef-
ficients through another postprocessing step. The operation count per real transform
is almost identical to that for the first procedure.

These techniques require either than N is an even number, or that the number of
transforms to be performed is even. Usually this is only a minor nuisance, but the
point to be made here is that in circumstances where speed is essential, faster alter-
natives to these procedures exist.

Bergland [1, 21, building on an idea credited to Edson, presented a more efficient
algorithm. If a real data sequence is used as input to a complex FFT algorithm, then
about half the computation is redundant. By pruning out these redundant operations,
a faster procedure than those presented in [3] is obtained. Bergland’s algorithms were
specializations of the Cooley-Tukey [4] and Gentleman-Sande [5] variants of the
FFT, and thus required data permutations before or after the transforms. Also, he
only gave details for the case N = 2 p, though the possibility of extending the
procedure to the more general case was mentioned.

In this paper we show how to specialize the self-sorting mixed-radix algorithms of
[8] to the real/half-complex case. The reduction in the operation count compared
with the procedures of [3] is shown to be typically 20%, and savings of around 30%
are obtained in the execution time for a real/half-complex FFT package on the Cray-
1, as used for the meteorological applications at ECMWF described in [8].

2. PRINCIPLES OF THE ALGORITHM

In [8], Eq. (1) was rewritten as x = W,,,c; the discrete Fourier transform (DFT)
matrix W, is defined by [W,](j, k) = cdk, where w = exp(2irr/N) and the rows and
columns of W, are indexed from 0 to N - 1. The FFT algorithms were derived from
the matrix factorization

w,, = (Wq X Ip) P:D;(Wp x I&, (3)

where W,, W, are the DFT matrices of order p, q; I,, I, are the corresponding
identity matrices; and PC, 0: are permutation and diagonal matrices defined in [8].

342 CLIVE TEMPERTON

In this paper we shall also need the corresponding result for Eq. (2), which can be
written (dropping the scaling factor) as c = m,,,x, where I?, is the complex conjugate
of W,. From (3) we have immediately

(Here & is the complex conjugate of O,“.)
As in \8], Eq. (4) can be extended to the multipie-factor case in several different

ways. For the self-sorting decimation-in-time variant, let N = n, n, . . nk, I, = I,
Z,+,=n,l,for l<i,<k,andmi=N/li+,. Then the general form is given by

@,= TkTk-, -.a T,T, (5)

with

Ti = (wni X Z~,,i)(p:~Di~ X I,,) (6)

In connection with self-sorting decimation in time, it was noted in (81 that for
example in the case A’= pqr, the first stage consists of DFTs of length p on qr
interleaved samples of the data; in the second stage these are combined into DFTs of
length pq on r samples of the data, and in the final stage these are combined into a
single DFT of length pqr. The same is true of the algorithm given by (5) and (6). To
be specific, let

z(O) = 2 9
zm = Tizci- 1) for 1 < i < k.

Then

zCi) = (lT$+, x Imp. (7)

Proof. Equation (7) is true for i = 0, since Ii = i, m, = N. Suppose Eq. (7) hokds
for i- 1. Then

z'~) = T.z"-" = T@,, x I,& L

by inductive hypothesis.
Using the definition of Ti, this can be written as

(‘ni ’ zNIPl,)(p~,Dffi X z,J(fi/i X Zmi-,)Z.

Since l,m, = N/n, and m,-, = mini this becomes

REAL MIXED-RADIX FFT

which can be rearranged to give

343

which is just (El,+, x I,,Jz as required, using Eq. (4) with p = li, q = ni, and
li, 1 = n,l,.

Since I,. , = N and mk = 1, Eq. (7) implies that zck) = w,,,z, so the above argument
constitutes a formal inductive proof that the whole algorithm works.

The significance of Eq. (7) in the present context is as follows. Suppose z(O) is a
vector of real numbers. Then z”) consists of mi interleaved inverse DFTs of length
li+l; each of these is a transform of real data, and is therefore conjugate-symmetric.
It follows that zci) contains only N independent real numbers for 0 Q i < k. The
specialization of the complex FFT algorithm to the real/half-complex case depends
on the fact that only N real numbers need be specified at each stage; the “missing”
numbers are either zero imaginary parts or the conjugates of complex numbers
already specified.

3. ROUTINES FOR THE REAL/HALF-COMPLEX CASE

The specialization of the algorithms given in [S] to the real/half-complex case is
most easily described in terms of Fortran routines. We first give a routine for self-
sorting decimation in time applied to the inverse transform of complex data.

Suppose that the factors of N have been stored in an array IFAX(1) to IFAX-
(NFAX), and that a complex array of trigonometric function values has been defined
by

TRIGS(K + 1) = exp(ZiKn/N), O<K&N-1.

The data to be transformed are in an array A, and a work array C is provided. Each
array acts alternately as input and output for successive stages of the algorithm. The
FFT routine is then given by

C DECIMATION IN TIME
COMPLEX A(N), C(N), TRIGS(N)
INTEGER IFAX(NFAX)
LA=N
DO 18 I = 1, NFAX
IFAC = IFAX(1)
LA = LA/IFAC
CALL PASS(A, C, TRIGS, IFAC, LA, N)

C [now reverse roles of A and C]
10 CONTINUE

STOP
END

344 CLIVE TEMPERTON

The subroutine PASS takes the following form:

DECIMATION IN TIME FOR INVERSE TRANSFORM
SUBROUTINE PASS(A, C, TRIGS, IFAC, LA, N)
COMPLEX A(N), C(N), TRIGS(N)
M = N/IFAC
Define IFAC base addresses in A
IA = 0, IB = LA, IC = 2 * LA, ID = 3 * LA ,...
Define IFAC base addresses in C
JA=0,JB=M,JC=2*M, JD=3*M ,...
.

I=1
J=l
JUMP = (IFAC - 1) * LA
DO20K=0,M-LA,LA
DO 10L=l,LA
C(J) = W(IFAC) * (Si(K) * A(1))
I=I+l
J=J+l

I0 CONTINUE
I=I+JUMP

20 CONTINUE
RETURN
END

In the inner loop, @IFAC) is the inverse DFT matrix of order IFAC, fi(;d(K) is the
complex conjugate of the diagonal matrix Q(K) given by

R(K) = diag(TRIGS(l), TRIGS(K + l), TRIGS(2 * K + I),...),

A(Z) and C(J) are vectors of length IFAC defined by

Suppose now that we apply the routine given above to data which is initially real
(Fourier analysis). As shown in the previous section, the vector zti) of Eq. (7)
consists of mi interleaved complex conjugate sequences, each of length Zi+ i. The first
mi- I elements of zupl) are therefore real. If Zi is odd, these are followed by
mi- i(Zi - 1)/2 complex elements, and the remaining m,- i(Zi - 1)/2 elements are their
complex conjugates. If Zi is even, these complex conjugate sequences are separated by
a further mi-, real elements.

The ith call of subroutine PASS computes z”) from z(‘- ‘), and IFAC * LA

REAL MIXED-RADIX FFT 345

corresponds to m,- 1. During the first pass through the outer loop (K = 0), the
elements of A(Z) are taken from the first IFAC * LA = mi _ i elements of zfi- ‘). The
vectors A(Z) are therefore real; a(O) is the identity matrix, and the results are
conjugate-symmetric, e.g., for IFAC = 4, C(J) = (c,, ci, c2, c:‘) with c,,, c2 real; for
IFAC = 5, C(J) = (co, c,, c2, c T, CT) with c0 real. Special coding is required for this
case.

Each subsequent pass through the outer loop accesses the next m,-, entries of
z(‘-‘). For 0 < K < M/2, we have full complex transforms as in the case of complex
input data.

For K = M/2 (which will be invoked only if li is even), the input vectors are again
real, but this time a(K) is not the identity matrix; in fact, fi(M/2) = diag(1, CI, a’,...)
where a = exp(--ilr/IFAC). The results have a “shifted” conjugate symmetry, e.g., for
IFAC = 4, C(J) = (c,, ci, c:, c$); for IFAC = 5, C(J) = (co, ci , c2, CT, cg*) with c2
real. Further special coding is required for this case.

For K > M/2 we again have full complex transforms, but the results are just the
complex conjugates of the results already obtained for K’ = M - K.

In specializing the routine to the case of real input data we adopt the following
strategy, which can be implemented by suitable modifications to the indexing. First,
zero imaginary parts will not be stored. Second, only one member of each complex
conjugate pair is stored; if C(J) = C(Z)* and .Z > Z but C(J) is computed first, then
that result is conjugated and stored at the location for C(Z). This enables us to
terminate the outer loop of the subroutine PASS at K = M/2. As a consequence, only
the first half of the TRIGS array is ever used.

At each stage of the algorithm, some of the results will be real while others are
complex, and the storage pattern remains to be specified. An orderly and convenient
arrangement is to separate the real and imaginary parts of a complex number in the
vector z(l) of Eq. (7) by m, locations.

The corresponding algorithm to compute x = W,c with c conjugate-symmetric and
x real (Fourier synthesis), can be obtained by “inverting” each operation of the
algorithm given above. This is exactly equivalent to an analogous specialization of
the decimation-in-frequency form of the complex FFT algorithm applied to Eq. (1).

In both cases the vectors x and c are naturally ordered, in contrast to the
algorithms of Bergland [1, 21; all necessary permutations are accomplished internally
by the indexing scheme of the subroutine PASS.

4. SMALL-~ TRANSFORMS AND OPERATION COUNTS

In [8], algorithms were given for the “small-n” transforms x = W,z for 2 < n < 6.
For example, x = W,z is given by

t, = zg) + z2 ; t,=z, +z,; t, = z. - z2 ; t,=z, -z3;

x,=t,+t,; x, = t, + it,; x, = t, - it,. (8) x2 = t, - t, ;

For x, z complex this requires 16 real additions.

SS1/52/2-9

346 CLIVE TEMPERTON

In the Fourier analysis routine described above, corresponding algorithms are
required for transforms of the form x = w,z. These are easily derived by noting that
p,,z = Wnz’, where z’ is derived from z by reversing the order of the components z1
to z,-,. For example, x = w,z is given by

t, = zo + I2 ; t, = z1 + zj ; t, = z. - z2 ; t,=z,-z,;
(9)

x0 = t, + t, ; x, = t, + it,; x2 = t, - t, ; x3 = 1, - it,.

The operation count is the same; in fact, only one statement in (8) has to be changed
to obtain (9).

Consider the case K = 0 in the Fourier analysis routine; here we have to apply (9)
to real input data. The temporary results t, , t2, t, , t, are all real; x3 = x: and will not
be stored, while x, itself requires only an “apparent” addition. In this case the
algorithm x = w.,z requires only 6 real additions. Corresponding operation counts
for K = 0 and various values of n are given in Table I.

For the case K = 0 in the corresponding Fourier synthesis routine, we have to
apply (8) to complex conjugate input data, i.e., z. and z2 are real, while z3 = z:. If
we write

zo= yo; z1= Y, + ZY,; zz=y2; z3 = y1 - 63

then the algorithm (8), expressed in terms of real numbers, becomes

t1= Yo + Y,i t2 = 2Y, ; t3 =yo- Y,i t, = 2Y3;

x0 = t, + t,; x, = t, - t,; x2 = t, - t, ; x,=t,+t,.

Besides 6 real additions, it appears that two doublings are required. Such doublings
can be omitted throughout the whole algorithm for x = W,,,c if the complex elements
of c are doubled before entry. Alternatively the real elements (co and c,,, if N is even,
co only if N is odd) can be halved before entry; the algorithm with the doublings
omitted then computes x = f W,c. With this trick included, the operation counts for
K = 0 during Fourier synthesis become the same as those during Fourier analysis.

TABLE I
- -

Real Operation Counts (Adds/M&s) for x = a(K) W,z or x = W,R(K)z

n K=O O<K<M/Z K=M/2

2 2/o 614 o/o
3 412 16/12 412
4 6/O 22112 612
5 1216 40128 1216
6 1414 46128 12/4
8 2012 66132 22110

REAL MIXED-RADIX FFT 347

Specializing the other small-n transforms given in [8] to the case K = 0 for real
Fourier analysis or synthesis is equally straightforward, and is left to the interested
reader.

As mentioned in the previous section, special transform algorithms are also
required for the case K = M/2, to compute x = L! W,, z or z = w,,&, where x is real,
z is “shifted conjugate-symmetric,” and LJ = diag(1, a, a2,...) with a = exp(irr/ln).
These algorithms are given in the Appendix, and operation counts for them are
included in Table I.

We now consider total operation counts for a real/half-complex transform
x = W,z where N is composite. For the complex case, formulas for the operation
counts were derived in [8], and it was noted that the counts are independent of the
order in which the factors are used. In the real/half-complex case, there is a slight
dependence on the order of the factors. The operation counts can be derived by
resorting to counting the number of trips through the loops of subroutine PASS (for
K = 0, 0 < K < M/2 and K = M/2, for each factor in turn) and using the results of
Table I.

In Table II we present the operation counts for a selection of values of N, both for
a conventional real transform (using the algorithms of [3] together with a complex
transform of length N/2) and for the special real transform described here. In the
conventional case, allowed factors of N/2 are 2 < n Q 6 as in [8]. In the special case,
a single factor n = 8 is also allowed, and the counts are for Fourier synthesis by
decimation in frequency, using the factors in ascending order, and ignoring any
multiplications used for resealing (Fourier analysis using the factors in descending
order would give the same operation counts). The single factor n = 8 is allowed since
with the factors used in this way, only the simple K = 0 loop is invoked for n = 8.
N = 256 is factorized as 4* rather than 2 . 42 . 8 since the latter gives a slightly
higher operation count.

Table II shows that use of the special real transform gives a reduction of about
20% in the operation counts, the saving being slightly greater for additions than for
multiplications.

TABLE II

Real Operation Counts for a Real Transform of Length N

N

180
192
200
216
240
256

Conventional Special real

Adds Mults Adds Mults

2156 1104 1714 928
2076 832 1654 694
2446 1220 2004 1074
2552 1224 2020 1012
2896 1352 2364 1176
2876 1152 2286 942

348 CLIVE TEMPERTON

Bergland [1] quotes slightly lower operation counts for a radix-2 algorithm than
would be obtained using the counting procedure given here; this is because he treats
K = M/4 as a special case (the rotation angle in R is then 7c/4). Also, he exploits the
fact that no operations are required in the case K = M/2 to reduce the number of
passes for N = 2p from p to (p - 1). This trick only works for the radix-2 algorithm.

5. IMPLEMENTATION ON CRAY-1 AND CYEIER 205

The first real/half-complex FFT package developed for use on the Cray-1 at
ECMWF was based on the procedures of [3] together with a complex FFT algorithm
as described in [8]. This was later superseded by a package using the special real/
half-complex algorithm described in this paper. As in [8], vectorization was achieved
simply by performing multiple transforms in parallel. Both packages were written in
Cray Assembly Language (CAL).

Table III shows the times per transforms and megaflop rates for various values of
N, in the case of 64 transforms being performed simultaneously. The results include
the time and operations required for resealing. The new package achieves a 30%
saving in CPU time over the old; as discussed in Section 4 there is a 20% reduction
in the operation count, while the remaining saving is a result of programming
improvements. As a further measure of efficiency, in the new package the floating-
point addition unit is busy for up to 88% of the time.

A similar package has now been implemented on the Cyber 205 at the UK
Meteorological Office; some details are given in [7]. As discussed in [8], the
straightforward multiple approach to vectorization adopted on the Cray-I is inade-
quate on the Cyber 205, which requires much longer vectors to reach near-maximum
efficiency. The solution outlined in [8] for the complex case, based on interleaving
the transforms and using Eq. (7) for decimation in frequency or an analogous result
[6] for decimation in time, carries over directly to the real/half-complex case.
Running on the two-pipe Cyber 205 in 32-bit mode, the real FFT package reaches

TABLE III

Times per Transform and Speeds for Multiple Real Transforms on Cray-1

Conventional Special real
*

iv Time @) Megaflops Time (US) Megaflops

180 38.9 90 25.8 105
192 38.4 81 25.3 100
200 40.8 94 30.8 107
216 44.5 91 31.3 99
240 51.5 89 36.3 104
256 51.7 78 37.6 95

REAL MIXED-RADIX FFT 349

speeds of almost 300 megaflops if many transforms can be computed
simultaneously [7].

The prime factor algorithms described in [9] can also be specialized to real/half-
complex transforms, but as in the complex case the potential gain appears to be very
modest on machines such as the Cray-1 and Cyber 205 where multiplications can be
performed in parallel with additions.

APPENDIX: SMALL-~ TRANSFORMS FOR K=M/2

Here we set out the algorithms to compute x = Q W,z (Fourier synthesis) or
z = w,,fix (Fourier analysis), where x is real, z is “shifted conjugate symmetric,” and
R = diag(1, a, a*,...) with a = exp(ilr/n). The algorithms are expressed in terms of real
arithmetic, and z is written in terms of real vectors as z = a + zb.

(a) Fourier Synthesis

n = 2: X,=U,; x, = -b,.

n=3: 1
t, = $0 - a, ;

x, = uo + a, ; x,=t,-sin60*b,; x2 = -t, - sin 60 * b,.

n = 4: t, = sin 45 * (b, + b,); t, = sin 45 * (a, - a,);
x, = a, + a, ; x, = t, - t, ; X*=b1-bo; xj = -(t2 + t,).

n=5: t, = a, + a, ; t, = at, -a,; t, = (&/4) * (a, - a,);
t, = sin 36 * b, + sin 72 * b, ; t, = sin 72 * b, - sin 36 * b, ;

t, = t, + t, ; t, = t, - t, ;

x0 = t, + q; Xl = t, - t, ; x2 = t, - t, ; x3 = -t, - t, ; x,=-t,-t4.

n=6: t, = uo + u2 ; t, = b, + b, ; t, = sin 60 * (a, - a,);
t, = sin 60 * (b, - b2); t, = ft, - a, ; t, = ft2 + b, ;

x0 = a, + t,; x,=t,-tt,; x2 = t, - t, ;

x,=b,-t,; x4 = -(t4 + t,);’ x5 = -(t3 + te).

(b) Fourier Analysis

n = 2: u,=x,; b, = -x1,

n=3: t, = x1 - x* ;
1 u,=x,+$,; a1 - -4x0 - t, ; b, = - sin 60 * (x1 + x2).

n=4: t, = sin 45 * (xi - x,); t, = sin 45 * (x, + x,);
u,=x,+ t,; u,=x,-tt,; b, = -x2 - t, ; b,=x,-t,.

350 CLIVE TEMPERTON

n = 5: 1, =x1-x,; t* =x, fx,; t, =x2-x,; t4 =x2 fx,;
t, = t, - tz; t, =x0 + at,; t, = (J5/4) * 0, + t,);
a, = t, + t, ; a, = t, - t, ; a2 = x0 - t, ;

b, = - sin 36 * t2 - sin 12 * t, ; b, = - sin 72 * t, + sin 36 * t,.

tZ= 6: t, = sin 60 * (x3 -x,); t, = sin 60 * (x, + x4);
1, = x2 - x, ; t, =x, + x, ; tJ = x0 + +t3 ; t, = -x, - ft, ;
a, = t, - t, ; a,=x,-tt,; a2 =t,+t,;

bo=ts-t,; b, = x3 - t, ; b, = t, + tz.

REFERENCES

1. G. D. BERGLAND, Cotm. Assoc. Cornput. Mach. 11 (1968), 703.
2. G. D. BERGLAND, IEEE Trans. Audio Electroacoust. 17 (1969), 138.
3. J. W. COOLEY, P. A. W. LEWIS, AND P. D. WELCH, J. Sound Vib. 12 (1970), 315-337.
4. J. W. COOLEY AND J. W. TUKEY, Math. Comput. 19 (1965), 297.
5. W. M. GENTLEMAN AND G. SANDE, Proc. AFZPS Joint Comput. Co& 29 (1966), 563.
6. D. G. KORN AND J. J. LAMBIOTTE, Math. Comput. 33 (1979). 977.
7. C. TEMPERTON, “Fast Real Fourier Transforms on the Cyber 205,” Met.O.11 Tech. Note No. 1

Meteorological Oflice, UK, 1982.
8. C. TEMPERTON, J. Comput. Phys 52 (1983), l-23.
9. C. TEMPERTON, J. Comput. Phys. 52 (1983), 199-205.

